Билет № 6
1. Виды понятий. Общие понятия могут быть регистрирующими и нерегистрирующими. Регистрирующими называются понятия, в которых множество мыслимых в нем элементов поддается учету, регистрируется (во всяком случае в принципе). Например, «участник Великой Отечественной войны 1941—1945 гг.», «родственники потерпевшего Шилова», «планета Солнечной системы». Регистрирующие понятия имеют конечный объем. Общее понятие, относящееся к неопределенному числу элементов, называется нерегистрирующим. Так, в понятиях «человек», «следователь», «указ» множество мыслимых в них элементов не поддается учету: в них мыслятся все люди, следователи, указы прошедшего, настоящего и будущего. Нерегистрирующие понятия имеют бесконечный объем.
В процессе рассуждения общие понятия могут употребляться в разделительном и собирательном смысле. Если высказывание относится к каждому элементу класса, то такое употребление понятия будет разделительным; если же высказывание относится ко всем элементам, взятым в единстве, и неприложимо к каждому элементу в отдельности, то такое употребление понятия называется собирательным.
2. Разделительно-категорическое умозаключение, его модусы и роль в познании.
Разделительно-категорическим называется умозаключение, в котором одна из посылок — разделительное, а другая посылка и заключение — категорические суждения. Простые суждения, из которых состоит разделительное (дизъюнктивное) суждение, называются членами дизъюнкции, или дизъюнктами. Утверждая один член дизъюнкции, мы с необходимостью должны отрицать другой и, отрицая один из них, — утверждать другой. В соответствии с этим различают два модуса разделительно-категорического умозаключения: (1) утверждающе-отрицающий и (2) отрицающе-утверждающий. 1. В утверждающе-отрицающем модусе (modus ponendo tollens) меньшая посылка — категорическое суждение — утверждает один член дизъюнкции, заключение — также категорическое суждение — отрицает другой ее член. Например:
Облигации могут быть предъявительскими (р) или именными (q)
Данная облигация предъявительская (q)___________
Данная облигация не является именной (не-q)
Схема утверждающе-отрицающего модуса: p ¥ q, p
7q ¥ — символ строгой дизъюнкции. Заключение по этому модусу всегда достоверно, если соблюдается 1 правило: большая посылка должна быть исключающе-разделительным суждением, или суждением строгой дизъюнкции..
2. В отрицающе-утверждающем модусе (modus tollendo ponens) меньшая посылка отрицает один дизъюнкт, заключение утверждает другой. Например:
Облигации могут быть предъявительскими (р) или именными (q)
Данная облигация не является предъявительской (не-р) ___________
Данная облигация именная (q).
Схема отрицающе-утверждающего модуса: <pVq>, 7p
q < > — символ закрытой дизъюнкции.
Утвердительный вывод получен посредством отрицания: отрицая один дизъюнкт, мы утверждаем другой. Заключение по этому модусу всегда достоверно, если соблюдается правило: в большей посылке должны быть перечислены все возможные суждения — дизъюнкты, иначе говоря, большая посылка должна быть полным (закрытым) дизъюнктивным высказыванием. Применяя неполное (открытое) дизъюнктивное высказывание, достоверного заключения получить нельзя.. Разделительная посылка может включать не два, а три и больше членов дизъюнкции